PREDICTIVE REGRESSION UNDER VARIOUS DEGREES OF PERSISTENCE AND ROBUST LONG-HORIZON REGRESSION by

نویسندگان

  • Peter C.B. Phillips
  • Ji Hyung Lee
چکیده

The paper proposes a novel inference procedure for long-horizon predictive regression with persistent regressors, allowing the autoregressive roots to lie in a wide vicinity of unity. The invalidity of conventional tests when regressors are persistent has led to a large literature dealing with inference in predictive regressions with local to unity regressors. Magdalinos and Phillips (2009b) recently developed a new framework of extended IV procedures (IVX) that enables robust chi-square testing for a wider class of persistent regressors. We extend this robust procedure to an even wider parameter space in the vicinity of unity and apply the methods to long-horizon predictive regression. Existing methods in this model, which rely on simulated critical values by inverting tests under local to unity conditions, cannot be easily extended beyond the scalar regressor case or towider autoregressive parametrizations. In contrast, themethods developed here lead to standard chi-square tests, allow for multivariate regressors, and include predictive processes whose roots may lie in a wide vicinity of unity. As such they have many potential applications in predictive regression. In addition to asymptotics under the null hypothesis of no predictability, the paper investigates validity under the alternative, showing how balance in the regression may be achieved through the use of localizing coefficients and developing local asymptotic power properties under such alternatives. These results help to explain some of the empirical difficulties that have been encountered in establishing predictability of stock returns. © 2013 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disentangling Continuous Volatility from Jumps in Long-Run Risk-Return Relationships

Abstract Realized variance can be broken down into continuous volatility and jumps. We show that these two components have very different predictive powers on future long-term excess stock market returns. While continuous volatility is a key driver of medium to long-term risk-return relationships, jumps do not predict future mediumto long-term excess returns. We use inference methods robust to ...

متن کامل

Predictive Quantile Regression with Persistent Covariates: IVX-QR Approach

This paper develops econometric methods for inference and prediction in quantile regression (QR) allowing for persistent predictors. Conventional QR econometric techniques lose their validity when predictors are highly persistent. I adopt and extend a methodology called IVX …ltering (Magdalinos and Phillips, 2009) that is designed to handle predictor variables with various degrees of persistenc...

متن کامل

Inference of Long-Horizon Predictability

Examination over multiple horizons has been a routine in testing asset return predictability in finance and macroeconomics. In a simple predictive regression model, we find that the popular scaled test for multiple-horizon predictability has zero null rejection rate if the forecast horizon increases at a faster rate than the inverse of proximity of the predictor autoregressive root to the unity...

متن کامل

Title: A Simple Approach for Diagnosing Instabilities in Predictive Regressions

We introduce a method for detecting the presence of time variation and instabilities in the parameters of predictive regressions linking noisy variables such as stock returns to highly persistent predictors such as stock market valuation ratios. Our proposed approach relies on the least squares based squared residuals of the predictive regression and is trivial to implement. More importantly th...

متن کامل

Bias Reduction and Likelihood Based Almost-Exactly Sized Hypothesis Testing in Predictive Regressions using the Restricted Likelihood

Difficulties with inference in predictive regressions are generally attributed to strong persistence in the predictor series. We show that the major source of the problem is actually the nuisance intercept parameter and propose basing inference on the Restricted Likelihood, which is free of such nuisance location parameters and also possesses small curvature, making it suitable for inference. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013